GOUERMMENT POYTECHNIC
VAISHALI

Unit-6 Analysis and Design of T-Beam (LSM)
Sub Code: 1615604
Sub: Design of structures (As per Syllabus)

By: Awash Kuman Lecturer(ivi)

General features of T-Beam:

A T-Beam used in construction, is a load bearing structure of veinfored concrete, with a T-shaped cros-section. The top of the T-shaped cross-section serves an a flange or compression member in resisting compressive strenes. The web (vertical section) of the beam below the compression flanges serves to sexist- shear stress.

Advantages of T-Beams:

1) Since the beam in cart monolithically asith the slab, the flange also takes up the compressing stresses which mean, if will be rose effeetme in resisting the sagging moment acting on the beam.
2) Better head room, the in direct outcome of the tint point since the depth of beam can be considerably reduced.
3) for larger spans, t-beans are usually preferred rather than rectangular beam as the deflection is reduced to a good extent.
\rightarrow Effective width of flange as per Is code:
$b=$ actual weridth of flange.
$b_{f}=$ effective width of Flange.
$d=$ effective depth
$b_{w}=$ width of weber res or beam
$D_{f}=$ depth of flange or slab.

Case a) Isolated T-Beam

$$
B_{f}=\frac{l_{0}}{\left(\frac{l_{0}}{B}+4\right)}+b_{w}
$$

Where $B_{F}=$ effective width of flange
$b_{w}=$ breadth of ribor web.
$B=$ actual width of flange.
$l_{0}=$ distance b / ω points of zero moment
\rightarrow If T Beam is simply Supported at ends.
eg.

BID

$$
l_{0}=l_{\mathrm{eff}} .
$$

\rightarrow If T Beam is continow fired
$\xi:$

$$
l_{0}=0.7 l_{\mathrm{lf}}
$$

Cose B) Monolithically Casted T-Beam
ie slab + Beam type T-Beam

$$
\begin{aligned}
& B_{F}=\frac{l_{0}}{6}+b_{\omega}+6 D_{F} \\
& \text { or } \\
& \begin{array}{c}
\text { ceube to cente } \\
\text { drstame bloo } \\
\text { slab }
\end{array}
\end{aligned}\left\{\begin{array}{l}
\frac{l_{1}}{2}+b_{\omega}+\frac{l_{2}}{2}
\end{array}\right\} \operatorname{Min}^{m}
$$

DF $=$ Depth of flange.
Rest all symbots in formula gren abone in same in meaning as of previous case a.

Analysis of singly-neinforeed T- Beam
As per syllabus we have to study only for the case of neutral apis lying within the flange
(1) Xu, lime (cimiting depth of neutral apis).

$$
\begin{aligned}
x_{u, 1 \mathrm{l}}=k d & =\left(\frac{700}{1100+0.87 f y}\right) d \\
& =0.53 d \rightarrow F e 250 \\
& =0.48 \phi \rightarrow f e 415 \\
& =0.46 d \rightarrow f e 500
\end{aligned}
$$

(2) Actual depth of NA and Moment of vostance

Can(1) \rightarrow If MA lie in flarge.
stess Dicogram
Sbair digram

$$
\therefore T=0.87 \mathrm{fy} \text { At } .
$$

$$
\begin{gather*}
G_{1}=T \\
0.36 \mathrm{fen} B_{f}=\text { Su }=0.87 \mathrm{fy} . \mathrm{A}_{3} \mathrm{O} \\
\therefore x_{u}=\frac{0.87 \mathrm{fy} \mathrm{~A}_{\mathrm{r}}}{0.36 \mathrm{fen} \mathrm{Bf}_{f}} \tag{A}
\end{gather*}
$$

(2) Moment of Resistance:

$$
M_{u}=0.36 \operatorname{sen} B_{f} X_{u}\left(d-0.42 X_{u}\right)
$$

If $\mathrm{Xu}_{u}<\mathrm{Xu}_{\mathrm{r}}$ m then Mu. (U.R.S)

OR

$$
M_{u}=0.87 \text { fy Asr }(d-0.42 \mathrm{xy})
$$

(8) If $\mathrm{xu}<\mathrm{ru}_{1} l \mathrm{~lm} \rightarrow$ U.RS $\rightarrow \mathrm{US}_{4} x_{4}$

(4) Design formula:

$$
\begin{align*}
B \cdot M_{U} & =Q B A \cdot d^{2} \\
\therefore d & =\sqrt{\frac{B M}{Q \cdot B F}}
\end{align*}
$$

Area of steel
lemithysection,

$$
\text { Ast }=\frac{B \cdot M_{4}}{0.87 f_{y}\left(d-0.42 x_{y, ~ l u m}\right)}
$$

$$
\begin{aligned}
& \therefore A_{s t}=\frac{B \cdot M_{u}}{0.87 f_{y} j d .} \\
& \frac{\text { Case-2> of N.A is in web area. }}{\text { ie (rlu }>D_{f} \text {). (Nof in }} \text { Syllabus) }
\end{aligned}
$$

(1) Caluelate $1 \cdot 0 \cdot R$ of an isolated contionens T. soon of effectuse Epen = 12 m , is M30, re 415,L34.

$$
\begin{aligned}
\operatorname{lef} & =0.7 \operatorname{lo} \\
& =0.7 \% 12 \\
& =8.4 \mathrm{~m}
\end{aligned}
$$

(1)
gol

$$
\begin{aligned}
b F=\frac{0.7 l_{0}}{\frac{0.7 l_{0}}{B}+4}+b \omega= & \frac{58900}{\frac{98400}{1600}+4}+400 \\
= & \frac{08400}{09.5}+400= \\
& =12843.47 \mathrm{~mm} \\
& =1308.108 \mathrm{~mm}
\end{aligned}
$$

(2) $\quad \mathrm{Du}_{\mathrm{L}} \mathrm{lim}=0.48 \times 840=403.2 \mathrm{~mm}$.
(3) Caleulaty x.

Assimey $x_{\mu}<D_{f}$.

$$
\begin{array}{rl}
C & =T . \\
0.36 f_{e n} b_{F} X_{u} & =0.87 f_{y} \text { Ar } \\
\therefore d_{u} & =\frac{0.87 \times 415 \times 5 \times \frac{\pi}{4}(25)^{2}}{0.36 \times 30 \times 1308.108} \\
z & 62.72 \mathrm{~mm} \cdot T D_{F}=160 \mathrm{~mm} \\
<x_{u} i 1 m(s o u r s)
\end{array}
$$

Herce it is U.R.S and. asscenepticous abo corred.

$$
\begin{aligned}
\therefore M_{u} & =0.36 \mathrm{Fu} \mathrm{~F}_{\mathrm{F}} \mathrm{X}_{u}(d-0.42 \mathrm{Ku}) \\
& =0.36 \times 30 \times 1308.108 \times 62.72(840-0.42 \times 62.72) \\
& =720.97 \mathrm{kN-m}
\end{aligned}
$$

If depth of slab is 10 cm , width of web 30 cm , depth of web 50 cm , centre to centre distance of beams 3 m , effective span of beams 6 m , the effective flange width of the beam, is
[A]. 200 cm
[B]. 300 cm
[C]. 150 cm
[D]. 100 cm

Solve the abone Question.
Design of T-Beam
As persyllates \rightarrow Neubal ares corthin or upto Jlange bottom
ie.
ie $x / \leqslant D F$

besign of T-Beam formorient and shear

Coad Calculation:
Load on beam oell come prom ceutse lo Ceulve ditane of adjacent slabs.

Lads oven 1 m lougth of beam uill come from area of

$$
\begin{aligned}
& \underset{\substack{\text { widsh } \\
(\omega)}}{\operatorname{inx}} \frac{\left(\frac{l_{1}}{2}+b \omega+\frac{l_{2}}{2}\right) m}{(\text { Leyfts) }} \\
& \text { (} \omega \text {) }
\end{aligned}
$$

(engt)

(1) Lineliad $z \omega_{L} \times 1 \mathrm{~m} \times\left(\frac{l_{1}}{2}+b_{\omega}+\frac{l_{2}}{2}\right)=\omega_{1}$,

(B) Weipht of $=d f \times 1 m \times\left(\frac{l_{1}}{2}+b \omega+\frac{l_{2}}{2}\right) \times \omega_{c}=\omega_{3}$
(1) weight of ${ }^{2}$ web pronon beam

$$
\begin{aligned}
& \text { of Conorete) } \\
& b_{10} \times \operatorname{lm} x\left(D-d_{f}\right) \times \omega_{c} \sum \omega_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Scanned with CamScanner }
\end{aligned}
$$

If size of beam in given:
Given Values:
(1) Size of the beam:

$$
B F, d f, b w, d, D
$$

(3) Bending Moment $=\mathrm{BM}_{\mathrm{M}}$. Find out
(1) Ask $=$?

it M. OR \&o freed section au
Core (1) Calculate N.R of the section, when $x u=d f-g \cdot$ in It care:

$$
\begin{aligned}
M_{U_{1}} & =0.36 \mathrm{fen} B_{f} d_{u}(d-0.42 \mathrm{xu}) \\
& =0.36 \mathrm{fen} B_{f} d f\left(d-0.42 d_{f}\right)
\end{aligned}
$$

\rightarrow Designuy for moment.
(1) If BMU1 $<M \mathrm{Ru}_{1}$ ${ }_{2}^{d_{1}}<{ }_{1}<d_{f}$

The in first Cars.
a) Find out $x u_{1}$, by equating $B M O_{1}=M R_{\text {formula }}$
iè $B \cdot M_{U_{1}}=0.36 \mathrm{fen} B_{F} \mathrm{Xu}_{1} / d-0.42 \mathrm{xu}$?
so get $x_{u}=$?
b) Area of sted:

$$
\begin{align*}
& B \cdot M_{U_{1}}=0.87 \mathrm{fy} A_{s r}(d-0.42 x u) \\
& \therefore A_{s t}=\frac{B M_{1}}{0.87 F_{y}(d-0.42 x u)} \tag{n}
\end{align*}
$$

(1) A Fleam as shown in fig in Simply supported oven anreffecture span of 10 m . Design the beam; if the beam in subjected to folloromy B.M's. Use M_{25}, fe 500.

Design for (1) $450 \mathrm{kN-m} \sum_{2}$ factored Mom 675 kN

88 ${ }^{n}$ Finding $14 . O \cdot R$ at specified locations.

1) when $x u=d f$.
$80 M R_{u_{1}}=0.36 f_{\text {en }} b_{f} d_{f}^{\chi^{x u}}(d-0.42 d f)^{f_{\mu}}$.

$$
\begin{aligned}
& \text { and } b_{F}= \frac{d_{0}}{\left(\frac{l_{0}}{B}+4\right)}+b_{0} \\
&=\frac{10,000}{\left(\frac{10,000}{2000}+4\right)}+360 \\
&=1471.11 \mathrm{~mm} \\
& \therefore M R U_{1}=0.36 \times 25 \times 1471.11 \times 125(900-0.42 \times 12 \mathrm{~F}) \\
&= 1402.61 \mathrm{kN-m} . \\
& X_{\text {u,lim }}=0.46 \times 900=414 \mathrm{~mm}
\end{aligned}
$$

(aro1) when $B M U_{1}=1.5 \times 450=675 \mathrm{kN} \mathrm{cm}$.
$12 \mathrm{BM} v_{1}<M R u_{1} \Rightarrow\left\{x_{u}<d_{F}.\right\}$ Ist Cono.
Equating:

$$
\begin{aligned}
& B \cdot M u_{1}=0.36 \mathrm{feu} \cdot B_{f} \cdot x_{u_{1}}\left(d-0.4 x_{u_{1}}\right) \\
& 675 \times 10^{6}= 0.36 \times 25 \times 1471.11 x_{u_{1}}\left(900-0.42 x_{u_{1}}\right) \\
& \therefore x_{u_{1}}=58.23 \mathrm{~mm}<125 \mathrm{~mm} \\
& \quad \text { ons) }
\end{aligned}
$$

$$
\begin{aligned}
\text { So Aor } & =\frac{0.36 \mathrm{fcu} \mathrm{Bf} \mathrm{Xus}_{1}}{0.87 \mathrm{fy}} \\
& =\frac{0.36 \times 25 \times 1471.11 \times 58.23}{0.87 \times 500} \\
& =1772-3 \mathrm{3mm}^{2}
\end{aligned}
$$

So provide $6-20 \mathrm{~mm} \phi$ bars.

- Design of T-Beam for shear will be same as studied an Unit -5 of Syllabus.
\Rightarrow Types of problems:

1) Finding effective flange coidth.
2) Finding moment of resistance of T-Bean Section with N.A lies coithm or upto the bottom of flange.

$$
\text { ie }\left(x_{u} \leqslant d f\right)
$$

